安冰 研究员 安冰 研究员

最小化 最大化

安冰 研究员

个人简介

安冰,中国科学院化学研究所研究员,博士生导师。2018年在厦门大学获得理学博士学位;2019年进入英国曼彻斯特大学从事博士后研究工作,2023年任英国曼彻斯特大学-英国石油公司国际先进材料中心(bp-ICAM)合作项目的项目研究员,2024年作为国家高层次引进人才全职加入中国科学院化学研究所。从事低碳小分子化合物、生物质等碳资源的光、热催化转化方面的研究,以构效关系为主线,在活性位点的设计和可控合成、应用非弹性中子散射和中子衍射、同步辐射X射线衍射、同步辐射X射线吸收等尖端光谱技术对动态和复杂的化学反应过程进行原位研究方面取得了系列成果。至今共发表SCI论文40余篇,其中以第一(含共一)作者在Nat. Mater.Nat. Catal.J. Am. Chem. Soc.Acc Mater. Res.ACS Catal. 等期刊上发表 17篇。获玛丽居里行动卓越奖章(2019 Marie-Sklodowska-Curie Actions Seal of Excellence)、英国皇家化学会道尔顿地平线奖(2024 RSC Dalton Horizon Prize)、研究生国家奖学金(2017、2013、2012)等重要奖项及荣誉。

教育背景

2014-09至2018-06,厦门大学,化学化工学院,博士

2011-09至2014-06,河南大学,化学化工学院/河南省多酸化学重点实验室,硕士

2007-09至2011-06,河南大学,理科实验班(化学),本科

工作经历

2024-11至今,中国科学院化学研究所,中国科学院胶体、界面与化学热力学重点实验室,研究员

2022-01至2024-10,英国曼彻斯特大学-英国石油公司国际先进材料中心,项目研究员

2019-04至2021-12,英国曼彻斯特大学,博士后

2018-07至2019-03,厦门大学,科研助理

研究方向

低碳小分子化合物的催化转化

生物质及废弃塑料的光热耦合催化

金属有机框架、多金属氧酸盐等功能材料的可控设计与合成

利用中子散射和衍射、同步辐射等技术原位研究探究催化反应过程

发表论文

1. Direct photo-oxidation of methane to methanol over a mono-iron-hydroxyl site. Bing An, Zhe Li, Zi Wang, Xiangdi Zeng, Xue Han, Yongqiang Cheng, Alena M. Sheveleva, Zhongyue Zhang, Floriana Tuna, Eric J. L. McInnes, Mark. D. Frogley, Anibal J. Ramirez-Cuesta, Louise Natrajan, Cheng Wang, Wenbin Lin, Sihai Yang* and Martin Schröder*. Nat. Mater. 2022, 21, 932-938. 

2. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Bing An, Zhe Li, Yang Song, Jingzheng Zhang, Lingzhen Zeng, Cheng Wang*, and Wenbin Lin. Nat. Catal. 2019, 2, 709–717.

3. Activation and catalysis of methane over metal-organic framework materials. Bing An, Yujie Ma, Xue Han, Sihai Yang* and Martin Schröder*. Acc. Mater. Res. 2024, in press. DOI: 10.1021/accountsmr.4c00279 (front cover article).

4. Ultra-fast Proton Conduction and Photocatalytic Water Splitting in a Pillared Metal−Organic Framework. Jin Chen†, Bing An† (co-first author), Yinlin Chen, Xue Han, Qingqing Mei, Meng He, Yongqiang Cheng, Inigo J. Vitorica-Yrezabal, Louise S. Natrajan, Daniel Lee, Anibal J. Ramirez-Cuesta, Sihai Yang*, Martin Schroder*. J. Am. Chem. Soc. 2023, 145, 19225-19231.

5. Neighboring Zn–Zr sites in a metal–organic framework for CO2 hydrogenation. Jingzheng Zhang†, Bing An† (co-first author), Zhe Li†, Yonghua Cao, Yiheng Dai, Wangyang Wang, Lingzhen Zeng, Wenbin Lin, Cheng Wang*. J. Am. Chem. Soc. 2021, 143, 8829−8837. 

6. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal−organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. Bing An, Jingzheng Zhang, Kang Cheng, Pengfei Ji, Cheng Wang*, and Wenbin Lin*. J. Am. Chem. Soc. 2017, 139, 3834−3840. 

7. Molecular iridium complexes in metal–organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. Bing An, Lingzhen Zeng, Mei Jia, Zhe Li, Zekai Lin, Yang Song, Yang Zhou, Jun Cheng, Cheng Wang*, and Wenbin Lin*. J. Am. Chem. Soc. 2017, 139, 17747–17750. 

8. ZnO supported on a Zr-based metal–organic framework for selective CO2 hydrogenation to methanol. Jingzheng Zhang†, Bing An† (co-first author), Yonghua Cao, Zhe Li, Jiawei Chen, Xuefeng He, Cheng Wang*. ACS Appl. Energy Mater. 2021, 4, 13567−13574.

9. A Pyrocarbonate intermediate for CO2 activation and selective conversion in bifunctional metal-organic frameworks. Bing An, Yaping Meng, Zhe Li, Yahui Hong, Tingting Wang, Shuai Wang*, Jingdong Lin*, Cheng Wang*, Shaolong Wan, Yong Wang, and Wenbin Lin. J. Catal. 2019, 2019, 373, 37-47.

10. Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Jingzheng Zhang†, Bing An† (co-first author), Yahui Hong, Yaping Meng, Xuefu Hu, Cheng Wang*, Jingdong Lin, Wenbin Lin, and Yong Wang. Mater. Chem. Front. 2017, 1, 2405-2409.

11. Pyrolysis of metal−organic frameworks to Fe3O4@Fe5C2 core−shell nanoparticles for Fischer−Tropsch synthesis. Bing An, Kang Cheng, Cheng Wang*, Ye Wang*, and Wenbin Lin*. ACS Catal. 2016, 6, 3610−3618. 

12. Systematic design of secondary building units by an efficient cation-directing strategy under regular vibrations of ionic liquids. Bing An, Jun-Li Wang, Yan Bai*, and Dong-Bin Dang*. Dalton Trans. 2015, 44, 14666–14672. 

13. Cation-size-controlled assembly of the Ni(Ac)2–1,4-H2NDC system: geminal dicationic ionothermal syntheses, crystal structures and magnetic properties. Bing An, Yan Bai*, Jun-Li Wang, and Dong-Bin Dang*. Dalton Trans. 2014, 43, 12828–12831.

14. A rare diarboxylate and N-oxide/H2O bridged metal-organic framework with nickel(II)-oxide octahedral chains: synthesis, crystal structure, and magnetic properties with theoretical investigations on the exchange mechanism. Bing An, Yan Bai*, Jun-Li Wang, and Dong-Bin Dang*. Mater. Lett. 2015, 141, 280–283.

15. Structural versatility and luminescent properties in d10 metal ion polymers with 1,4-naphthalenedicarboxylate acid and 4,4‘-dipyridyl-N,N‘-dioxide. Bing An, Rui-Min Zhou Dong-Bin Dang*, Jun-Li Wang, Hui Pan, and Yan Bai*. Spectrochim. Acta, Part A 2014, 122, 392-399.

16. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands. Bing An, Rui-Min Zhou, Li Sun, Yan Bai* and Dong-Bin Dang*. Spectrochim. Acta, Part A 2014, 128, 319-326. 

17. A 3D chiral hydrogen bond framework based on phenanthrolinium hydrogen 4,5-dichlorophthalate: crystal structure and luminescent properties. Bing An, Yan Bai*, Fan Yang. Z. Naturforsch. 2012, 67b, 85–88. 

其余已发表合著论文

18. Trace benzene capture by decoration of structural defects in metal-organic framework materials. Trace benzene capture by decoration of structural defects in metal-organic framework materials. Yu Han, Wenyuan Huang, Ming He, Bing An, Martin Schröder* and Sihai Yang* et al. Nat. Mater. 2024, in press, DOI: 10.1038/s41563-024-02029-1.

19. Enhanced Benzene Adsorption in Chloro-Functionalised Metal-Organic Frameworks. Yu Han, David Brooks, Meng He, Yinlin Chen, Wenyuan Huang, Boya Tang, Bing An, Martin Schröder*, Sihai Yang* et al. J. Am. Chem. Soc. 2024, in press, DOI: 10.1021/jacs.4c07207.

20. Direct synthesis of N‐formamides by integrating reductive amination of ketones and aldehydes with CO2 fixation in a metal‐organic framework. Wenyuan Huang, Qingqing Mei, Shaojun Xu, Bing An, Martin Schröder* and Sihai Yang* et al. Chem. Eur. J. 2024, 30, e202303289.

21. Direct conversion of methane to ethylene and acetylene over an iron-based metal–organic framework. Yujie Ma, Xue Han, Shaojun Xu, Zhe Li, Wanpeng Lu, Bing An, Martin Schröder*, Sihai Yang* et al. J. Am. Chem. Soc. 2023, 145, 20792-20800.

22. Pt nanoparticles on beta zeolites for catalytic toluene oxidation: Effect of the hydroxyl groups of beta zeolite. Run Zou, Sarayute Chansai, Shaojun Xu, Bing An, Christopher Hardacre*, Yilai Jiao*, Xiaolei Fan* et al. ChemCatChem. 2023, 15, e202300811.

23. Bimetallic aluminum‐and niobium‐doped MCM‐41 for efficient conversion of biomass‐derived 2‐methyltetrahydrofuran to pentadienes. Mengtian Fan, Shaojun Xu, Bing An, Sihai Yang* et al. Angew. Chem. Int. Ed. 2022, 61, e202212164.

24. Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO4(H3O)2. Jin Chen, Bing An, Sihai Yang*, Martin Schröder* et al. J. Am. Chem. Soc. 2022, 144, 27, 11969–11974.

25. Efficient Photocatalytic Reduction of CO2 Catalyzed by the Metal–Organic Framework MFM-300(Ga). Tian Luo, Zi Wang, Xue Han, Yinlin Chen, Dinu Iuga, Daniel Lee, Bing An, Martin Schröder*, Sihai Yang* et al. CCS Chemistry. 2022, 4, 8, 2560−2569. 

26. Multiple Cuprous Centers Supported on a Titanium-Based Metal–Organic Framework Catalyze CO2 Hydrogenation to Ethylene. Lingzhen Zeng, Yonghua Cao, Zhe Li, Yiheng Dai, Yongke Wang, Bing An, Cheng Wang* et al. ACS Catal. 2021, 11, 11696−11705.

27. Ionothermal synthesis, crystal structure and properties of one organic–inorganic compound based on basket-like {Sr⊂ P6Mo18O73} cage. Zhijie Qin, Zhi-Jie Qin, Yun-Feng Wang, Zheng-Fang Tian, Ya-Min Li, Bing An, Yan Bai*, Dong-Bin Dang*. Mater. Lett. 2019, 234, 368−370. 

28. Metal-organic frameworks in solid-gas phase catalysis. Cheng Wang*, Bing An, and Wenbin Lin*. ACS Catal. 2018, 9, 130-146.

29. A Dynamically Stabilized Single‐Nickel Electrocatalyst for Selective Reduction of Oxygen to Hydrogen Peroxide. Tingting Wang, Zhongming Zeng, Lingyun Cao, Zhe Li, Xuefu Hu, Bing An, Cheng Wang*, Wenbin Lin. Chem-Eur. J. 2018, 24, 17011−17018.

30. Two-dimensional metal-organic layers on carbon nanotubes to overcome conductivity constraint in electrocatalysis. Ling Yang, Bing An, Cheng Wang* et al. ACS. Appl. Mater. Inter. 2018, 10, 36290-36296.

31. Warm-white-light-emitting diode based on a dye-loaded metal–organic framework for fast white-light communication. Zhiye Wang, Zi Wang, Bangjiang Lin, XueFu Hu, YunFeng Wei, Cankun Zhang, Bing An, Cheng Wang, Wenbin Lin. ACS. Appl. Mater. Inter. 2017, 9, 35253–35259.

32. Surface modification of two‐dimensional metal‐organic layers creates biomimetic catalytic microenvironments for selective oxidation. Wenjie Shi, Lingyun Cao, Hua Zhang, Xin Zhou, Bing An, Cheng Wang*, Wenbin Lin* et al. Angew. Chem. Int. Ed. 2017, 56, 9704-9709.

33. Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte membrane fuel cells. Chao Zhang, Yu-Cheng Wang, Bing An, Ruiyun Huang, Cheng Wang*, Wenbin Lin*. Adv. Mater. 2017, 29, 1604556.

34. Metal-organic frameworks stabilize mono(phosphine)-metal complexes for broad-scope catalytic reactions. Takahiro Sawano, Zekai Lin, Dean Boures, Bing An, Cheng Wang, Wenbin Lin*. J. Am. Chem. Soc. 2016, 138, 9783−9786.

35. Förster energy transport in Metal−organic frameworks is beyond step-by-step hopping. Qiongqiong Zhang, Cankun Zhang, Lingyun Cao, Zi Wang, Bing An, Cheng Wang* et al. J. Am. Chem. Soc. 2016, 138, 5308−5315.

36. Sulfur-doping achieves efficient oxygen reduction in pyrolyzed zeolitic imidazolate frameworks. Chao Zhang, Bing An, Cheng Wang*, Wenbin Lin* et al. J. Mater. Chem. A 2016, 4, 4457–4463.

37. A polyoxometalate-based inorganic–organic hybrid polymer constructed from silver-Schiff base building block and Keggin-type cluster: Synthesis, crystal structure and photocatalytic performance for the degradation of rhodamine B. Lei Li, Yan Bai*, Bing An, Dongbin Dang* et al. Spectrochim. Acta, Part A, 2015, 150, 846-854.

38. One Novel Three-Dimensional Framework Constructed from Infrequent μ-O Metal Chains with Alternating Antiferromagnetic/Ferromagnetic Interactions. Haiyan Li, Bing An, Yan Bai* et al. Synth. Met. 2014, 194, 126-131. 

39. Three-dimensional homochiral manganese-lanthanide frameworks based on chiral camphorates with multi-coordination modes. Dongbin Dang*, Bing An, Yan Bai* et al. Chem. Commun. 2013, 49, 2243- 2245.

40. Crystal structure and spectral properties of a one-dimensional coordination polymer {[Co(dpa)(H2O)4]·(dpdo)·(H2O)}n (H2dpa = 2, 2'-biphenyldicarboxylate, dpdo = 4, 4'-bipyridine-N, N'-dioxide). Hui Pan, Yan Bai*, Bing An, Dongbin Dang*. Chin. J. Inorg. Chem. 2013, 29, 1710-1716.

41. Assembly of a phospho-molybdic Wells–Dawson-based silver coordination polymer derived from Keggin polyoxoanion cluster. Dong-Bin Dang*, Bing An, Yan Bai*, Jing-Yang Niu. Dalton Trans. 2012, 41, 13856–13861. 

42. Assembly of one novel polyoxometalate-based inorganic-organic compound from copper-Schiff base building block: Synthesis, crystal structure and spectral properties. Dong-Bin Dang*, Bing An, Jing-Yang Niu, Yan Bai*. Spectrochim. Acta, Part A, 2012, 91, 338-344.

43. A series of metal-organic frameworks based on polydentate Schiff-base ligands derived from benzil dihydrazone: synthesis, crystal structures and luminescent properties. Yan Bai*, Hui Gao, Bing An, Dongbin Dang* et al. CrystEngComm 2010, 12, 1422-1432.

44. Synthesis, crystal structure and luminescent properties of a nickel complex [Ni(NCS)2(phen)2] with mixed ligands. Dongbin Dang*, Hui Gao, Bing An, and Yan Bai*. Chem. Res. (Huaxue yanjiu) 2009, 20, 62-64